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Commercially available gas, liquid, and chemical sources of oxygen
for use with fuel cell batteries are compared. Cryogenic sources are
shown to be the most efficient on a weight and volume basis. Chemical
generators are satisfactory for applications requiring rather large quan-
tities of oxygen gas at infrequent periods. Compressed gas cylinders are
convenient when small quantities of oxygen are desired. A bibliography
of selected publications during the past five years Is included.

1. INTRODUCTION

The practicable utilization of present day fuel cells requires a de-
pendable source of oxygen. The oxygen should be sufficiently pure that un-
impaired operation of the battery is insured. The use of air directly is
not considered in this survey as trace impurities would eventually impair
the electrochemical efficiency of the oxygen electrode. Furthermore, the
cell would be complicated by the addition of air pumps and chemical purifi-
cation trains. For portable applications, the source and cell must be ef-
ficient on a weight and volume basis.

Available sources of oxygen consist of containers of gaseous or liquid
oxygen and of chemical and mechanical generators. A comparison of these
sources is needed in order to choose an oxygen supply offering the best
compromise of lightness, convenience, and dependability.

2. SOURCES OF OXYGEN

2.1 Compressed Gas

Compressed gas is commercially available in a variety of cylinder
sizes, some of which are listed in table I. The 9 5/B-in. cylinders are not
available separately but In stacks of 30, mounted on trailerS. The stack
is connected to a manifold so that the contents of the cylinders are deliv-
ered simultaneously. When the gas pressure drops to 50 lb/in.2, the valves
are automatically closed and a signal notifies the operator to change trail-
ore.

The weights of the cylinders of a given size may vary as much as
15 percent (1). This may amount to 10 lb for the 70 ft 8 and 20 lb for the 224
ft 3 sizes. Although the values for the ratio of the weight of gas to the
gross weight are consequently approximate, it is still evident that use of
the larger cylinders is more efficient from a weight standpoint.

The tabulated gross weights do not include weights of regulators
required to reduce the gas pressure to the low values used by fuel cells.
Such regulators weigh about 7 lb, which is less than the possible weight
variance of the larger cylinders and, in these cameo, may be neglected.



TABLE I. COMPARISON OF COMPRESSED OXYGEN CONTAINERS

Cylinder Gross Gas Gas Wt gasb Vol gasb
Cylinder Dimensions volumeb weighta volumea weight gross wt vol cylinder

diametera lengtha (700F, 1 atm)

(in.) (in.) (ft 3 ) (lb) (ft 3 ) (lb) (M) (ratio)

2 15 0.03 4 2 0.2 5 70:1

4 14 0.1 16 10 1 6 100.1

6 21 0.3 32 28 2 6 80;1

8 27 0.8 73 70 6 1 90.1

9 52 1.9 153 224 18 12 120:1

9 5/8 252 11.1 - 1540 128 - 140:1

a
From ref 2

bCalculated



2.2 Liquid Oxygen

Oxygen is also available in the liquid state. The containers
vary in capacity from a few liters to several thousand gallons. The
small containers are usually simple Dewar-type flasks made of glass or of
spun copper. They depend on high vacuum and the reflectivity of the sil-
vered glass or the polished copper surfaces for insulation. The containers
are open to the atmosphere and the low temperature is maintained by the
vaporization of liquid at a rate corresponding to the heat leakage. A 2-!
flask may have an evaporation loss, called boil-off, of 6 percent of its
contents per day (1).

linexpensive....L• size containers are available for commer-
cial uses requiring 6000 ft 3 , or more, of oxygen per month. These contain-
ers consist of an inner wall of polished stainless steel and a mild steel
outer shell. The intervening space is filled with a mixture of inert pow-
der and bright copper particles, then evacuated, and sealed. The cylinders
hold about 26 gal of liquid oxygen under a pressure of 75 lb/in.2 Excess
pressure generated by oxygen boil-off is relieved through a vent valve.
Thus with no additional equipment other than possibly a manifold, these
cylinders can supply 3000 ft 3 of oxygen at 300 ft 3 /hr and 75 lb/in. 2 pres-
sure. This is equivalent to 12 standard, 224 ft 3 , high-pressure cylinders (3).

Very efficient tanks for the storage and transportation of large
quantities of liquid oxygen have been constructed. A 30,000-gal railway tank
car is said to have an evaporation loss of only 0.1 percent per day (4) Such
tanks employ high vacuum and multiple radiation shields to achieve the high
degree of thermal isolation required. Table II liLts data for Dewar-type
flasks, pressurized liquid containers, and a selection of mobile and station-
ary tanks. It will be noted that once again, the larger tanks experience a
smaller percentage boil-off and have a more favorable content to gross-weight
or volume ratio.

Construction details of typical vacuum-jacketed storage vessels and
descriptions of instrumentation for the control of liquid oxygen flow are
available (10, 11, 12, 13, 14, 15) Storage containers and transfer equip-
ment capable of safe operation by unskilled personnel and conforming to mil-
itary specifications are in assembly-line production (16).

Progress in the state-of-the-art of cryogenic containers has been
very rapid. It is believed that it will be possible to construct storage
tanks with a gas to tank-volume ratio of 900.1 and a liquid to gross-weight
ratio of 93:100 in the near future. Evaporation losses as little as 0.02
percent per day are anticipated. A number of contemplated containers are
listed in table III.

The very large quantities of oxygen required at remote areas by the
military have spurred the production of mobile and of assembled-on-the-site
liquefying facilities. The capacities and weights of some of these units are
given in table IV.
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TABIZ IV. CRYOGENIC OXYGEN GENRATING XQUIPMNT PRDCED FOR T21 MILITARIO

Name of Unit Oxygen Capacity Approximate Weight

USN Shipboard Plant 110 lb/hr 21p000 lb

Trailer-mounted generator 25 lb/hr 8,000 lb

Trailer-mounted generator 125 lb/hr 30,000 lb

Skid-mounted generator 83 lb/hr 23,000 lb

Field generator-semitrailer 5 tons/day 78p000 lb

Field operation-railway car 20 tons/day

Transportable generator 28.2 tons/day -

Liquid oxygen facility 75 tons/day

aReference 8.

TABLM V. COMPARISON OF SOLID OKEMICAL SOUC•8S

Source Available Oxygen Gross wt of typical Yield of typical unit
(wt-percent) unit (wt-percent)

__________________(lb)

Barium peroxide 9-

Lithium peroxide 35a

Sodium chlorste 3 4 b 88 15b

Sodium peroxide 21a

Potassium superoxide 32c 4 d 15 d

aStoichiometric yield

bLiberated by chlorate candle( 2 2 )

CYield of commercial superouide( 2 1 )

dNeither the weight of water needed for reaction nor the weight of control equip-

ment is included.

@The yield is greater for additional candle furnaces per generator (23)
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2.3 Chemical

Liquid oxygen is the mcst economical source of oxygen gas; it can
not, however, be stored for long periods of time. The compressed gas, on
the other hand, can be stored indefinitely but only in very limited amounts,
within a reasonable volume. Chemical generators serve as a satisfactory
compromise in applications requiring rather large quantities of oxygen gas
at infrequent periods. Barium and sodium peroxides have been used to gener-
ate oxygen (17, 18, 19), lithium peroxide has been suggested (20), but the
most successful chemical generators employ sodium chlorate or potassium
superoxide. The amounts of oxygen available from these chemicals are com-
pared in table V.

Potassium superoxide (21) is frequently used in face masks that
do not admit air from the surrounding environment. The superoxide serves a
dual purpose. Water vapor from the wearer's breath reacts with potassium
superoxide forming potassium hydroxide and oxygen; the potassium hydroxide
then reacts with the exhaled CO2 to form potassium carbonate. Thus the
superoxide not only generates oxygen but also removes C0 2 from the system.
As the amount of oxygen generated is somewhat greater than is required for
normal breathing, the excess is vented to the outside through a one-way
valve.

Self-regulating generators furnishing moderate amounts of oxygen
on demand have been built commercially (21). A simple oxygen generator (fig. 1)
consisting of three compartments, one above the other, may be readily assem-
bled. Potassium superoxide is placed in the middle chamber and water in
the top. Water flows down and fills the Iower compartment eventually con-
tacting the superoxide in the middle. The oxygen gas generated forces the
water back up and stops further reaction. When gas is withdrawn, the drop
in pressure (in the middle chamber) causes water to again enter the middle
chamber and oxygen generation is resumed. This arrangement could be util-
ized to furnish oxygen for a hydrogen/oxygen fuel cell; the water required
for the decomposition of the K02 would be obtained from the cell.

Sodium chlorate yields slightly more oxygen, by weight, than does
potassium superoxide (34% for NaC1O 3 vs 32% for K0 2 ). The equipment re-
quired for oxygen generation is somewhat more complicated (22). Sodium
chlorate is mixed with iron powder, barium peroxide, and an inorganic binder
and fabricated into candles. When ignited by means of a percussion cap,
phosphorus match, or electric squib, the candle burns and liberates oxygen
at a rate proportional to the burning area for a period determined by the
length of the candle. Oxidation of the iron powder to iron oxide furnishes
heat to continue decomposition of the chlorate; the barium peroxide combines
with any chlorine that may be liberated during the reaction.

Although chlorate candles appear to have unlimited shelf life,
once ignited, the candle is generally burned to completion; excess oxygen is
stored under pressure in reserve tanks. Hence sodium chlorate is known as

11
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Figure 1. "Demand" oxygen generator.
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a controlled oxygen source; that is, the size and shape of the candle de-
termine the rate and period of oxygen generation. Potassium superoxide,
on the other hand, can generate oxygen on demand and within limits, in
proportion to the demand. It is therefore considered to be a demand chem-
ical source of oxygen.

A sodium chlorate oxygen generator is available commercially (21).
The unit consists of a chlorate candle burner, two storage tanks capable
of withstanding an internal pressure of 400 lb/in 2, and a reducing valve
outlet. About 35 ft 3 of oxygen are generated by one candle. A check valve
permits changing candles without loss of oxygen stored in the tanks. By
attaching a number of burners to a manifold and firing the candles elec-
trically, one at a time, whenever the pressure drops to a preset value, a
continuous oxygen supply may be attained A unit comprising six candles,
a storage tank, check valves, pressure switches, and firing mechanisms has
been designed (fig. 2) (23). Its weight and volume are estimated at 88 lb
and 5 ft 3 , respectively This unit can furnish oxygen for about 6 1/2 hr
at 25 ft 3 /hr and 10 psig, or a total of 162 ft 3 over a longer period The
weight efficiency of the unit (ratio of weight of gas to weight of unit)
is about 15 percent for one set of six candles, As the equipment can be
used indefinitely, the weight efficiency of the system may be increased by
providing additional sets of candles, for example, one additional set
raises the weight efficiency to 21 per cent. The weight efficiencies of
some chemicals and units used to generate oxygen are compared in table V.

The oxygen from any one of the three sources discussed above is satis-
factorily pure for fuel cell use. Compressed "extra dry grade" oxygen is
stated to have a minimum purity of 99,6 percent (2), Cryogenic oxygen is
99.5 to 99.6 percent pure; the major part of the impurity is argon (24, 25).
Oxygen from a chlorate generator is about 99.5 percent pure (22). It con-
tains small amounts of sodium chloride smoke and traces of carbon dioxide
and carbon monoxide. Less than 0.05 percent of carbon dioxide and 0.007
percent of carbon monoxide, by volume, are present. The superoxide gener-
ator produces oxygen described as breathing grade. Oxygen obtained by the
electrolysis of water has a purity of 99.5 percent (24).

3. ELECTROCHEMICAL POWER FROM OXYGEN SOURCES

A hydrogen/oxygen fuel cell, operating at 100 percent efficiency,
yields about 1.9 kw-hr/lb and about 0.16 kw-hr/ft 2 of oxygen consumed. To
assist in the selection of oxygen supplies for such cells, the amounts of
power that may be generated by the oxygen available from the various units
are listed in table VI. Power per pound and per cubic foot of source are
also shown. Although present oxygen electrode efficiencies are about 75
percent, 100-percent efficiency was assumed in calculating the data tabu-
lated; the weights and volumes of regulating equipment were neglected.

13
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TABLE VI. ELECTROCHEMICAL POWER FROM VARIOUS OXYGEN SOURCESa
(Hydrogen/•Cygen Cell)

kw-hr per kw-hr per kw-hr per

Source unit lb of unit ft 3 of unit

A Compressed gas cylinders

1. Smallest size 0.3 0.08 10

2. Largest size 35 0.24 18

B. Liquid containers

1. Smallest Dewar 24 0.78 35

2. Largest Dewar 940 1.2 67

3. Low-pressure cylinder 460 1.0 38

4. Tank - 51 ft3 volume 2,800 1.2 55

5. Tank - 198 ft 3 volume 8,900 1.3 45

6. Tank - 245 ft 3 volume 14,000 1.2 57

7. Tank - 509 ft3 volume 23j000 1.1 46

8. Tank - 4,530 ft 3 volume 230,000 1.3 52

9. IDX Trailer 75,000 1.6 89

C. Solid generator

Chlorate 25 0.28 5

Superoxide 1.1 0.22 16

aValues are computed for an oxygen electrode assumed to be l00% efficient.

Weights and volumes of regulatory equipment are not included.
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The power generated by oxygen in other electrochemical systems will
be different from the values tabulated. The ratios of the amounts of
power generated by the oxygen from the various sources will be independent
of the particular system employed.

4. SUMMARY

A graphical comparison of the various oxygen supplies is shown in
figure 3. Compressed-gas cylinders and solid-chemical generators possess
the best shelf life as there is no loss of oxygen due to evaporation. The
weight efficiency of compressed-gas cylinders, however, is only 5 to 15
percent because the containers must be made of heavy steel to withstand
high pressures, about 2000 psi. The weight efficiency of chlorate genera-
tors is limited by the 34 weight percent yield of the chemical mixture.
Systems for handling liquid oxygen in large, insulated, double-walled ves-
sels have been developed. These containers are much lighter because their
thin walls need withstand pressures of only a few pounds above atmospheric,
thus weight efficiencies as high as 84 percent may be achieved.

The volume ratio of gas at atmospheric pressure to gas at 2,000 psi is
approximately 130:1 One volume of chlorate candle yields about 300 volumes
of gaseous oxygen. However, one volume of liquid oxygen produces 860 vol-
umes of gas. Therefore, transportation and storage of oxygen in the liquid
form is most economical on a volume as well as a weight basis.
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